Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Econ Entomol ; 116(2): 632-636, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36744905

RESUMO

We assessed attraction of pine engraver, Ips pini (Say) (Coleoptera: Curculionidae; Scolytinae), to pheromone-baited funnel traps treated with repellent semiochemicals in ponderosa pine, Pinus ponderosa var. scopulorum Engelm., forests in northern Arizona. Treatments included: 1) baited control (B, ipsdienol + lanierone), 2) 70 g of SPLAT Verb (a flowable, biodegradable formulation containing 10% verbenone, ISCA Technologies Inc., Riverside, CA, USA) + B, 3) 70 g of SPLAT Verb + (E)-2-hexen-1-ol+(Z)-2-hexen-1-ol + acetophenone + B, 4) 7.84-g verbenone pouch (Product #3413, Synergy Semiochemicals Corp., Delta, British Columbia, Canada) + B, and 5) 7.84-g verbenone pouch + (E)-2-hexen-1-ol+(Z)-2-hexen-1-ol + acetophenone + B. In total, 472 I. pini were collected. Trap catches were highest in baited traps and declined significantly with the addition of both formulations of verbenone. Traps treated with SPLAT Verb caught significantly fewer I. pini and male I. pini than those treated with verbenone pouches. The addition of (E)-2-hexen-1-ol+(Z)-2-hexen-1-ol + acetophenone to SPLAT Verb and the verbenone pouch had no effect on trap catch. Verbenone has potential as an effective tool for protecting P. ponderosa trees and slash from I. pini in northern Arizona, but the addition of (E)-2-hexen-1-ol+(Z)-2-hexen-1-ol + acetophenone to verbenone is unwarranted.


Assuntos
Besouros , Gorgulhos , Animais , Arizona , Feromônios/farmacologia , Pinus ponderosa , Folhas de Planta , Colúmbia Britânica
2.
Plant Cell Environ ; 44(12): 3636-3651, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34612515

RESUMO

How carbohydrate reserves in conifers respond to drought and bark beetle attacks are poorly understood. We investigated changes in carbohydrate reserves and carbon-dependent diterpene defences in ponderosa pine trees that were experimentally subjected to two levels of drought stress (via root trenching) and two types of biotic challenge treatments (pheromone-induced bark beetle attacks or inoculations with crushed beetles that include beetle-associated fungi) for two consecutive years. Our results showed that trenching did not influence carbohydrates, whereas both biotic challenges reduced amounts of starch and sugars of trees. However, only the combined trenched-bark beetle attacked trees depleted carbohydrates and died during the first year of attacks. While live trees contained higher carbohydrates than dying trees, amounts of constitutive and induced diterpenes produced did not vary between live and beetle-attacked dying trees, respectively. Based on these results we propose that reallocation of carbohydrates to diterpenes during the early stages of beetle attacks is limited in drought-stricken trees, and that the combination of biotic and abiotic stress leads to tree death. The process of tree death is subsequently aggravated by beetle girdling of phloem, occlusion of vascular tissue by bark beetle-vectored fungi, and potential exploitation of host carbohydrates by bark beetle symbionts as nutrients.


Assuntos
Metabolismo dos Carboidratos , Secas , Cadeia Alimentar , Longevidade , Pinus ponderosa/fisiologia , Gorgulhos/fisiologia , Animais
3.
J Econ Entomol ; 113(6): 3017-3020, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-32885233

RESUMO

Recent outbreaks of engraver beetles, Ips spp. De Geer (Coleoptera: Curculionidae; Scolytinae), in ponderosa pine, Pinus ponderosa var. scopulorum Engelm. (Pinales: Pinaceae), forests of northern Arizona have resulted in widespread tree mortality. Current treatment options, such as spraying individual P. ponderosa with insecticides or deep watering of P. ponderosa in urban and periurban settings, are limited in applicability and scale. Thinning stands to increase tree vigor is also recommended, but appropriate timing is crucial. Antiaggregation pheromones, widely used to protect high-value trees or areas against attacks by several species of Dendroctonus Erichson (Coleoptera: Curculionidae; Scolytinae), would provide a feasible alternative with less environmental impacts than current treatments. We evaluated the efficacy of the antiaggregation pheromone verbenone (4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one) in reducing attraction of pine engraver, I. pini (Say), to funnel traps baited with their aggregation pheromone in two trapping assays. Treatments included 1) unbaited control, 2) aggregation pheromone (bait), 3) bait with verbenone deployed from a pouch, and 4) bait with verbenone deployed from a flowable and biodegradable formulation (SPLAT Verb, ISCA Technologies Inc., Riverside, CA). Unbaited traps caught no beetles. In both assays, baited traps caught significantly more I. pini than traps with either formulation of verbenone, and no significant difference was observed between the verbenone pouch and SPLAT Verb. In the second assay, we also examined responses of Temnochila chlorodia (Mannerheim) (Coleoptera: Trogositidae), a common bark beetle predator. Traps containing verbenone pouches caught significantly fewer T. chlorodia than the baited control and SPLAT Verb treatments. We conclude that verbenone shows promise for reducing tree mortality from I. pini.


Assuntos
Besouros , Gorgulhos , Animais , Arizona , Monoterpenos Bicíclicos , Feromônios/farmacologia
4.
J Econ Entomol ; 113(4): 1858-1863, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32281631

RESUMO

Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, trees and stands can be protected from Douglas-fir beetle, Dendroctonus pseudotsugae Hopkins (DFB)-caused mortality by application of synthetic formulations of the beetle's antiaggregation pheromone, 3-methylcyclohex-2-en-1-one (MCH). A biodegradable formulation of MCH, SPLAT MCH, was developed and evaluated for protecting individual Douglas-fir trees and small stands from colonization and mortality by DFB. In an individual-tree experiment in Idaho, both MCH bubble capsules and SPLAT MCH significantly reduced the proportion of treated trees colonized and killed by DFB compared to untreated controls. SPLAT MCH was as effective as MCH bubble capsules for protecting individual trees. Both MCH bubble capsules and SPLAT MCH significantly reduced the proportion of trees colonized and killed by DFB within 0.04-ha circular plots surrounding each treated tree compared to untreated controls. In 0.41 ha stands in New Mexico, both MCH bubble capsules and SPLAT MCH significantly reduced the proportion of trees colonized and killed by DFB compared to untreated controls, again with no differences observed between MCH treatments. In a similar stand level trial in Idaho, neither MCH treatment significantly reduced the proportion of trees colonized by DFB, and only MCH bubble capsules significantly reduced levels of tree mortality compared to untreated controls, but no significant difference was observed between SPLAT MCH and MCH bubble capsules. Overall, the results indicate that SPLAT MCH is as effective as MCH bubble capsules for protecting individual trees and small stands of Douglas-fir from DFB-caused mortality.


Assuntos
Besouros , Pseudotsuga , Gorgulhos , Animais , Cicloexanos , Idaho , New Mexico , Árvores
5.
J Chem Ecol ; 45(10): 888-900, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31493165

RESUMO

Interactions between water stress and induced defenses and their role in tree mortality due to bark beetles are poorly understood. We performed a factorial experiment on 48 mature ponderosa pines (Pinus ponderosa) in northern Arizona over three years that manipulated a) tree water stress by cutting roots and removing snow; b) bark beetle attacks by using pheromone lures; and c) phloem exposure to biota vectored by bark beetles by inoculating with dead beetles. Tree responses included resin flow from stem wounds, phloem composition of mono- and sesqui-terpenes, xylem water potential, leaf gas exchange, and survival. Phloem contained 21 mono- and sesqui-terpenes, which were dominated by (+)-α-pinene, (-)-limonene, and δ-3-carene. Bark beetle attacks (mostly Dendroctonus brevicomis) and biota carried by beetles induced a general increase in concentration of phloem mono- and sesqui-terpenes, whereas water stress did not. Bark beetle attacks induced an increase in resin flow for unstressed trees but not water-stressed trees. Mortality was highest for beetle-attacked water-stressed trees. Death of beetle-attacked trees was preceded by low resin flow, symptoms of water stress (low xylem water potential, leaf gas exchange), and an ephemeral increase in concentrations of mono- and sesqui-terpenes compared to surviving trees. These results show a) that ponderosa pine can undergo induction of both resin flow and phloem terpenes in response to bark beetle attack, and that the former is more constrained by water stress; b) experimental evidence that water stress predisposes ponderosa pines to mortality from bark beetles.


Assuntos
Besouros/fisiologia , Secas , Interações Hospedeiro-Parasita/efeitos dos fármacos , Pinus ponderosa/química , Terpenos/farmacologia , Animais , Cromatografia Gasosa , Pinus ponderosa/metabolismo , Casca de Planta/química , Casca de Planta/metabolismo , Resinas Vegetais/química , Resinas Vegetais/metabolismo , Estações do Ano , Terpenos/análise , Terpenos/química
6.
Nat Ecol Evol ; 1(9): 1285-1291, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29046541

RESUMO

Widespread tree mortality associated with drought has been observed on all forested continents and global change is expected to exacerbate vegetation vulnerability. Forest mortality has implications for future biosphere-atmosphere interactions of carbon, water and energy balance, and is poorly represented in dynamic vegetation models. Reducing uncertainty requires improved mortality projections founded on robust physiological processes. However, the proposed mechanisms of drought-induced mortality, including hydraulic failure and carbon starvation, are unresolved. A growing number of empirical studies have investigated these mechanisms, but data have not been consistently analysed across species and biomes using a standardized physiological framework. Here, we show that xylem hydraulic failure was ubiquitous across multiple tree taxa at drought-induced mortality. All species assessed had 60% or higher loss of xylem hydraulic conductivity, consistent with proposed theoretical and modelled survival thresholds. We found diverse responses in non-structural carbohydrate reserves at mortality, indicating that evidence supporting carbon starvation was not universal. Reduced non-structural carbohydrates were more common for gymnosperms than angiosperms, associated with xylem hydraulic vulnerability, and may have a role in reducing hydraulic function. Our finding that hydraulic failure at drought-induced mortality was persistent across species indicates that substantial improvement in vegetation modelling can be achieved using thresholds in hydraulic function.


Assuntos
Carbono/deficiência , Secas , Transpiração Vegetal/fisiologia , Árvores/fisiologia , Xilema/fisiologia , Mudança Climática , Cycadopsida/fisiologia , Magnoliopsida/fisiologia , Dinâmica Populacional , Estresse Fisiológico
7.
Tree Physiol ; 35(8): 806-16, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26048753

RESUMO

Conifers have incurred high mortality during recent global-change-type drought(s) in the western USA. Mechanisms of drought-related tree mortality need to be resolved to support predictions of the impacts of future increases in aridity on vegetation. Hydraulic failure, carbon starvation and lethal biotic agents are three potentially interrelated mechanisms of tree mortality during drought. Our study compared a suite of measurements related to these mechanisms between 49 mature piñon pine (Pinus edulis Engelm.) trees that survived severe drought in 2002 (live trees) and 49 trees that died during the drought (dead trees) over three sites in Arizona and New Mexico. Results were consistent over all sites indicating common mortality mechanisms over a wide region rather than site-specific mechanisms. We found evidence for an interactive role of hydraulic failure, carbon starvation and biotic agents in tree death. For the decade prior to the mortality event, dead trees had twofold greater sapwood cavitation based on frequency of aspirated tracheid pits observed with scanning electron microscopy (SEM), smaller inter-tracheid pit diameter measured by SEM, greater diffusional constraints to photosynthesis based on higher wood δ(13)C, smaller xylem resin ducts, lower radial growth and more bark beetle (Coleoptera: Curculionidae) attacks than live trees. Results suggest that sapwood cavitation, low carbon assimilation and low resin defense predispose piñon pine trees to bark beetle attacks and mortality during severe drought. Our novel approach is an important step forward to yield new insights into how trees die via retrospective analysis.


Assuntos
Besouros/fisiologia , Pinus/fisiologia , Estresse Fisiológico , Animais , Arizona , Carbono/fisiologia , Secas , New Mexico , Fotossíntese/fisiologia , Pinus/ultraestrutura , Resinas Vegetais , Estudos Retrospectivos , Madeira/fisiologia , Madeira/ultraestrutura , Xilema/fisiologia , Xilema/ultraestrutura
8.
New Phytol ; 198(2): 567-578, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23421561

RESUMO

To test the hypothesis that drought predisposes trees to insect attacks, we quantified the effects of water availability on insect attacks, tree resistance mechanisms, and mortality of mature piñon pine (Pinus edulis) and one-seed juniper (Juniperus monosperma) using an experimental drought study in New Mexico, USA. The study had four replicated treatments (40 × 40 m plot/replicate): removal of 45% of ambient annual precipitation (H2 O-); irrigation to produce 125% of ambient annual precipitation (H2 O+); a drought control (C) to quantify the impact of the drought infrastructure; and ambient precipitation (A). Piñon began dying 1 yr after drought initiation, with higher mortality in the H2 O- treatment relative to other treatments. Beetles (bark/twig) were present in 92% of dead trees. Resin duct density and area were more strongly affected by treatments and more strongly associated with piñon mortality than direct measurements of resin flow. For juniper, treatments had no effect on insect resistance or attacks, but needle browning was highest in the H2 O- treatment. Our results provide strong evidence that ≥ 1 yr of severe drought predisposes piñon to insect attacks and increases mortality, whereas 3 yr of the same drought causes partial canopy loss in juniper.


Assuntos
Besouros/fisiologia , Secas , Juniperus/crescimento & desenvolvimento , Juniperus/parasitologia , Pinus/crescimento & desenvolvimento , Pinus/parasitologia , Árvores/parasitologia , Animais , Metabolismo dos Carboidratos , Isótopos de Carbono , New Mexico , Folhas de Planta/metabolismo , Resinas Vegetais/metabolismo , Árvores/crescimento & desenvolvimento
9.
Tree Physiol ; 31(4): 428-37, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21551357

RESUMO

Tree defense against bark beetles (Curculionidae: Scolytinae) and their associated fungi generally comprises some combination of constitutive (primary) and induced (secondary) defenses. In pines, the primary constitutive defense against bark beetles consists of preformed resin stored in resin ducts. Induced defenses at the wound site (point of beetle entry) in pines may consist of an increase in resin flow and necrotic lesion formation. The quantity and quality of both induced and constitutive defenses can vary by species and season. The inducible defense response in ponderosa pine is not well understood. Our study examined the inducible defense response in ponderosa pine using traumatic mechanical wounding, and wounding with and without fungal inoculations with two different bark beetle-associated fungi (Ophiostoma minus and Grosmannia clavigera). Resin flow did not significantly increase in response to any treatment. In addition, necrotic lesion formation on the bole after fungal inoculation was minimal. Stand thinning, which has been shown to increase water availability, had no, or inconsistent, effects on inducible tree defense. Our results suggest that ponderosa pine bole defense against bark beetles and their associated fungi is primarily constitutive and not induced.


Assuntos
Ophiostomatales/patogenicidade , Pinus ponderosa/imunologia , Pinus ponderosa/microbiologia , Imunidade Vegetal/fisiologia , Resinas Vegetais/metabolismo , Gorgulhos/fisiologia , Animais , Arizona , Ophiostomatales/imunologia , Pinus ponderosa/parasitologia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Caules de Planta/imunologia , Caules de Planta/microbiologia , Caules de Planta/parasitologia , Análise de Regressão , Resinas Vegetais/análise , Estresse Fisiológico , Fatores de Tempo , Gorgulhos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...